首页> 外文OA文献 >Optimized Low-Complexity Implementation of Least Squares-Based Model Extraction for Digital Predistortion of RF Power Amplifiers
【2h】

Optimized Low-Complexity Implementation of Least Squares-Based Model Extraction for Digital Predistortion of RF Power Amplifiers

机译:基于最小二乘模型提取的射频功率放大器数字预失真的低复杂度优化实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Least squares (LS) estimation is widely used in model extraction of digital predistortion for RF power amplifiers. In order to reduce computational complexity and implementation cost, it is desirable to use a small number of training samples in the model parameter estimation. However, due to strong correlations between data samples in a real transmit signal, the ill-conditioning problem becomes severe in standard LS, which often leads to large errors occurring in model extraction. Using a short training sequence can also cause mismatch between the statistical properties of the training data and the actual signal that the amplifier transmits, which could degrade the linearization performance of the digital predistorter. In this paper, we propose first to use a 1-bit ridge regression algorithm to eliminate the ill-conditioning problem in the LS estimation and then use root-mean-squares based coefficients weighting and averaging approach to reduce the errors caused by the statistical mismatch. Experimental results show that the proposed approach can produce excellent model extraction accuracy with only a very small number of training samples, which dramatically reduces the computational complexity and the system implementation cost.
机译:最小二乘(LS)估计广泛用于RF功率放大器的数字预失真模型提取。为了降低计算复杂度和实现成本,期望在模型参数估计中使用少量训练样本。但是,由于实际发送信号中数据样本之间的强相关性,在标准LS中,病态问题变得很严重,这通常会导致模型提取中出现较大的错误。使用较短的训练序列也会导致训练数据的统计属性与放大器传输的实际信号之间的失配,从而可能降低数字预失真器的线性化性能。在本文中,我们建议首先使用1位脊线回归算法消除LS估计中的不适条件问题,然后使用基于均方根的系数加权和平均方法来减少统计不匹配引起的误差。实验结果表明,该方法仅需极少量的训练样本即可产生优异的模型提取精度,从而大大降低了计算复杂度和系统实现成本。

著录项

  • 作者

    Guan, Lei; Zhu, Anding;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号